2022年5月27日 · 但在锂离子反复沉积和析出的过程中,锂金属负极表面极易生长出枝晶,导致短路并消耗活性物质,进而缩短电池寿命、降低电池利用率,甚至会造成安全方位隐患。
了解更多2023年7月7日 · 分析磷酸铁锂、三元锂电池的技术特性,可以看出磷酸铁锂电池在安全方位性、经济性、原材料丰富度和循环寿命方面优势明显,而三元锂电池在能量
了解更多2023年5月29日 · 目前一道新能正在与国内外多所知名大学和研究所合作,TSiX电池研发的核心技术包括,顶电池和底电池中间层的低电阻隧穿层技术,顶电池在晶硅绒面上的保角沉积技术,顶部电池和底部电池的的光谱分配技术以及金属化技术,TSiX电池产业化效率将达30%
了解更多2024年6月7日 · 材料体系的研发决定了电池性能,如能量密度、快充性能、循环寿命和高低温性能等。 在系统成组方面,高比能电芯结合高效成组技术,提升电池包(CTP)和车身底盘(CTC)的体积利用率。
了解更多2024年2月21日 · 固态电解质离子输运机制、锂金属负极锂枝晶生长机制、多场耦合体系失控失效机制为固态电池发展面临的三大核心科学问题,解决三大科学问题是创制新型固态电解质材料、优化固态电池物理化学性能、推动固态电池发展的必经之路。 固态电池电解质综合性能难以平衡。
了解更多2024年12月14日 · 光伏电池的工作原理是半导体的光生伏特别有效应,由法国科学家Edmont Becquerel于1839年首次发现。 在光照条件下,能量大于半导体禁带宽度的光子被半导体吸收,激发半导体价带内被束缚的电子穿过禁带到达导带成为自由电子,在价带内留下空穴,形成电子-空穴对(自由电子和自由空穴统称为载流子),在由P型和N型半导体构成的内建电场作用下,电
了解更多2022年8月29日 · 其中,锂电池材料体系的迭代升级包括正负极材料、电解液和隔膜的迭代升级;电池结构革新又包括电芯、模组、封装方式等的结构改进和精确简。 从长期来看,由于磷酸铁锂电池能量密度上限较低,并且为了应对不同应用场景下的不同需求,锂电池技术路线将朝
了解更多2023年7月6日 · 其中,锂电池材料体系的迭代升级包括正负极材料、电解液和隔膜的迭代升级;电池结构革新又包括电芯、模组、封装方式等的结构改进和精确简。 从长期来看,由于磷酸铁锂电池能量密度上限较低,并且为了应对不同应用场景下的不同需求,锂电池技术路线将朝
了解更多2022年7月2日 · 太阳能电池工作的原理为光生伏特别有效应和PN 结。 光生伏特别有效应是指当物体受到光照时,物体内的电荷分布状态发生变化而产生电动势和电流的一种效应,该效应是光伏发电的原理。 电池片基本构造是运用P型与N型半导体接合而成,半导体最高基本的材料是"硅",纯净的硅是不导电的,但可以通过在硅中掺杂来改变分子结构:在硅晶体中掺入硼元素,即可做成 P 型半导
了解更多2024年12月17日 · 隔热墙技术是岚图汽车三元锂电池热失控"不冒烟"的首创核心技术,其原理是在电池包内,使用超强高分子隔热阻燃材料,将每个电芯分离,在电芯与电芯之间形成高效的阻热阻燃隔热层,并且单独三维立体包裹,如同"琥珀"一样。
了解更多